The Relationship Between Oxygen Reserve Index and Arterial Partial Pressure of Oxygen During Surgery.

Anesth Analg. 2016 Mar 22. [Epub ahead of print]
Applegate RL 2nd(1), Dorotta IL, Wells B, Juma D, Applegate PM.

Author information:
(1)From the *Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California; †Loma Linda University Research Consulting Group, Loma Linda, California; and \ddagger Department of Cardiology, Loma Linda University School of Medicine, Loma Linda, California.

BACKGROUND: The use of intraoperative pulse oximetry (SpO 2) enhances hypoxia detection and is associated with fewer perioperative hypoxic events. However, SpO 2 may be reported as 98% when arterial partial pressure of oxygen (PaO 2) is as low as 70 mm Hg . Therefore, SpO 2 may not provide advance warning of falling arterial oxygenation until PaO 2 approaches this level. Multiwave pulse co-oximetry can provide a calculated oxygen reserve index (ORI) that may add to information from pulse oximetry when SpO 2 is $>98 \%$. This study evaluates the ORI to PaO 2 relationship during surgery.
METHODS: We studied patients undergoing scheduled surgery in which arterial catheterization and intraoperative arterial blood gas analysis were planned. Data from multiple pulse co-oximetry sensors on each patient were continuously collected and stored on a research computer. Regression analysis was used to compare ORI with PaO2 obtained from each arterial blood gas measurement and changes in ORI with changes in PaO 2 from sequential measurements. Linear mixed-effects regression models for repeated measures were then used to account for within-subject correlation across the repeatedly measured PaO2 and ORI and for the unequal time intervals of PaO 2 determination over elapsed surgical time. Regression plots were inspected for ORI values corresponding to PaO2 of 100 and 150 mm Hg . ORI and PaO2 were compared using mixed-effects models with a subject-specific random intercept.
RESULTS: ORI values and PaO 2 measurements were obtained from intraoperative data collected from 106 patients. Regression analysis showed that the ORI to PaO2 relationship was stronger for PaO 2 to $240 \mathrm{~mm} \mathrm{Hg}(r=0.536)$ than for PaO 2 over $240 \mathrm{~mm} \mathrm{Hg}(r=0.0016)$. Measured PaO2 was $\geq 100 \mathrm{~mm} \mathrm{Hg}$ for all ORI over 0.24. Measured PaO 2 was $\geq 150 \mathrm{~mm} \mathrm{Hg}$ in 96.6% of samples when ORI was over 0.55. A random intercept variance component linear mixed-effects model for repeated measures indicated that PaO 2 was significantly related to ORI (β [95% confidence interval] $=0.002$ [0.0019-0.0022]; $\mathrm{P}<0.0001$). A similar analysis indicated a significant relationship between change in PaO2 and change in ORI (β [95% confidence interval] $=0.0044$ [0.0040-0.0048]; P < 0.0001).
CONCLUSIONS: These findings suggest that ORI >0.24 can distinguish $\mathrm{PaO} 2 \geq 100 \mathrm{~mm}$ Hg when SpO 2 is over 98%. Similarly, ORI >0.55 appears to be a threshold to distinguish $\mathrm{PaO} 2 \geq 150 \mathrm{~mm} \mathrm{Hg}$. The usefulness of these values should be evaluated prospectively. Decreases in ORI to near 0.24 may provide advance indication of falling PaO2 approaching 100 mm Hg when SpO 2 is $>98 \%$. The clinical utility of interventions based on continuous ORI monitoring should be studied prospectively.

